Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(1): 74-82.e5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38000368

RESUMO

Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Espalhamento a Baixo Ângulo , Subunidades Ribossômicas Menores de Bactérias/química , Difração de Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores/metabolismo , Microscopia Crioeletrônica
2.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240295

RESUMO

It is known that four peptide fragments of predominant protein in human semen Semenogelin 1 (SEM1) (SEM1(86-107), SEM1(68-107), SEM1(49-107) and SEM1(45-107)) are involved in fertilization and amyloid formation processes. In this work, the structure and dynamic behavior of SEM1(45-107) and SEM1(49-107) peptides and their N-domains were described. According to ThT fluorescence spectroscopy data, it was shown that the amyloid formation of SEM1(45-107) starts immediately after purification, which is not observed for SEM1(49-107). Seeing that the peptide amino acid sequence of SEM1(45-107) differs from SEM1(49-107) only by the presence of four additional amino acid residues in the N domain, these domains of both peptides were obtained via solid-phase synthesis and the difference in their dynamics and structure was investigated. SEM1(45-67) and SEM1(49-67) showed no principal difference in dynamic behavior in water solution. Furthermore, we obtained mostly disordered structures of SEM1(45-67) and SEM1(49-67). However, SEM1(45-67) contains a helix (E58-K60) and helix-like (S49-Q51) fragments. These helical fragments may rearrange into ß-strands during amyloid formation process. Thus, the difference in full-length peptides' (SEM1(45-107) and SEM1(49-107)) amyloid-forming behavior may be explained by the presence of a structured helix at the SEM1(45-107) N-terminus, which contributes to an increased rate of amyloid formation.


Assuntos
Amiloide , Peptídeos , Humanos , Sequência de Aminoácidos , Peptídeos/química , Amiloide/química , Fragmentos de Peptídeos/química , Proteínas Amiloidogênicas , Dicroísmo Circular , Dobramento de Proteína , Peptídeos beta-Amiloides/química
3.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768442

RESUMO

Ribosome biogenesis is a complex and highly accurate conservative process of ribosomal subunit maturation followed by association. Subunit maturation comprises sequential stages of ribosomal RNA and proteins' folding, modification and binding, with the involvement of numerous RNAses, helicases, GTPases, chaperones, RNA, protein-modifying enzymes, and assembly factors. One such assembly factor involved in bacterial 30S subunit maturation is ribosomal binding factor A (RbfA). In this study, we present the crystal (determined at 2.2 Å resolution) and NMR structures of RbfA as well as the 2.9 Å resolution cryo-EM reconstruction of the 30S-RbfA complex from Staphylococcus aureus (S. aureus). Additionally, we show that the manner of RbfA action on the small ribosomal subunit during its maturation is shared between bacteria and mitochondria. The obtained results clarify the function of RbfA in the 30S maturation process and its role in ribosome functioning in general. Furthermore, given that S. aureus is a serious human pathogen, this study provides an additional prospect to develop antimicrobials targeting bacterial pathogens.


Assuntos
Proteínas de Escherichia coli , Staphylococcus aureus Resistente à Meticilina , Humanos , Proteínas Ribossômicas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Escherichia coli/metabolismo , Bactérias/metabolismo , Mitocôndrias/metabolismo , RNA Ribossômico 16S/metabolismo
4.
J Struct Biol ; 214(4): 107900, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36191746

RESUMO

SEM1(68-107) is a peptide corresponding to the region of semenogelin 1 protein from 68 to 107 amino acid position. SEM1(68-107) is an abundant component of semen, which participates in HIV infection enhanced by amyloid fibrils forming. To understand the causes influencing amyloid fibril formation, it is necessary to determine the spatial structure of SEM1(68-107). It was shown that the determination of SEM1(68-107) structure is complicated by the non-informative NMR spectra due to the high intramolecular mobility of peptides. The complementary approach based on the geometric restrictions of individual peptide fragments and molecular modeling was used for the determination of the spatial structure of SEM1(68-107). The N- (SEM1(68-85)) and C-terminuses (SEM1(86-107)) of SEM1(68-107) were chosen as two individual peptide fragments. SEM1(68-85) and SEM1(86-107) structures were established with NMR and circular dichroism CD spectroscopies. These regions were used as geometric restraints for the SEM1(68-107) structure modeling. Even though most of the SEM1(68-107) peptide is unstructured, our detailed analysis revealed the following structured elements: N-terminus (70His-84Gln) forms an α-helix, (86Asp-94Thr) and (101Gly-103Ser) regions fold into 310-helixes. The absence of a SEM1(68-107) rigid conformation leads to instability of these secondary structure regions. The calculated SEM1(68-107) structure is in good agreement with experimental values of hydrodynamic radius and dihedral angles obtained by NMR spectroscopy. This testifies the adequacy of a combined approach based on the use of peptide fragment structures for the molecular modeling formation of full-size peptide spatial structure.


Assuntos
Amiloide , Infecções por HIV , Humanos , Espectroscopia de Ressonância Magnética , Peptídeos , Fragmentos de Peptídeos
5.
Biomol NMR Assign ; 16(2): 373-377, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070063

RESUMO

The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight ß-strands and three α-helices with the topology α1-ß1-ß2-α2- ß3- α3- ß4- ß5- ß6- ß7- ß8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.


Assuntos
Ribossomos , Staphylococcus aureus , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Ribossomos/metabolismo
6.
MethodsX ; 8: 101512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754783

RESUMO

The semenogelin 1 protein is secreted in the seminal vesicles. After ejaculation it is split into small peptide fragments using internal proteases. It was shown that the fragments SEM1(45-107), SEM1(49-107), SEM1(68-107) (SEM1(86-107) form amyloid fibrils, which increase the possibility of HIV infection. The article presents a protocol for the synthesis and purification of a 15N, 13C-labeled SEM1(68-107) peptide for further structural studies by high-resolution NMR spectroscopy. The work describes cloning, expression of fusion protein GB1-SEM1(68-107) in E.coli, its purification, removal of GB1 and purification of SEM1(68-107). The purity of SEM1(68-107) samples on each purification steps was evaluated by polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) and tricine-SDS-PAGE. The developed protocol allows to obtain SEM1(68-107) peptide for NMR studies (using 3D experiments), instead of costly solid-phase synthesis.

7.
Nat Commun ; 11(1): 1656, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245971

RESUMO

For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections.


Assuntos
Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenvolvimento de Medicamentos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Ribossômicas
8.
Eur Biophys J ; 49(3-4): 223-230, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32152681

RESUMO

Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Fatores de Alongamento de Peptídeos/química , Staphylococcus aureus , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Fatores de Alongamento de Peptídeos/metabolismo , Domínios Proteicos
9.
Biomol NMR Assign ; 13(1): 27-30, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30225569

RESUMO

Ribosome binding factor A (RbfA) is a 14.9 kDa adaptive protein of cold shock, which is important for bacterial growth at low temperatures. RbfA can bind to the free 30S ribosomal subunit and interacts with the 5'-terminal helix (helix I) of 16S rRNA. RbfA is important for the efficient processing of 16S rRNA and for the maturation (assembly) of 30S ribosomal subunits. Here we report backbone and side chains 1H, 13C and 15N chemical shift assignments of RbfA from Staphylococcus aureus. Analysis of the backbone chemical shifts by TALOS+ suggests that RbfA contains four α-helixes and three ß-strands with α1-ß1-ß2-α2-α3-ß3-α4 topology. Secondary structure of RbfA have KH-domain fold topology with ßααß subunit which is characterized by a helix-kink-helix motif in which the GxxG sequence is replaced by a conserved AxG sequence, where an Ala residue at position 70 forming an interhelical kink. The solution of the structure of this protein factor and its complex with the ribosome by NMR spectroscopy, X-ray diffraction analysis and cryo-electron microscopy will allow further development of highly selective substances for slowing or completely stopping the translation of the pathogenic bacterium S. aureus, which will interfere with the synthesis and isolation of its pathogenicity factors.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/química , Sequência de Aminoácidos , Isótopos de Nitrogênio , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...